Abstract

The Schrodinger and Heisenberg evolution operators are represented in quantum phase space by their Weyl symbols. Their semiclassical approximations are constructed in the short and long time regimes. For both evolution problems, the WKB representation is purely geometrical: the amplitudes are functions of a Poisson bracket and the phase is the symplectic area of a region in phase space bounded by trajectories and chords. A unified approach to the Schrodinger and Heisenberg semiclassical evolutions is developed by introducing an extended phase space. In this setting Maslov's pseudodifferential operator version of WKB analysis applies and represents these two problems via a common higher dimensional Schrodinger evolution, but with different extended Hamiltonians. The evolution of a Lagrangian manifold in the extended phase space, defined by initial data, controls the phase, amplitude and caustic behavior. The symplectic area phases arise as a solution of a boundary condition problem. Various applications and examples are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.