Abstract

Motivated by recent synthetic and theoretical progress we consider magnetism in crystals of multi-nuclear organometallic complexes. We calculate the Heisenberg symmetric exchange and the Dzyaloshinskii-Moriya antisymmetric exchange. We show how, in the absence of spin-orbit coupling, the interplay of electronic correlations and quantum interference leads to a quasi-one dimensional effective spin model in a typical tri-nuclear complex, Mo$_3$S$_7$(dmit)$_3$, despite its underlying three dimensional band structure. We show that both intra- and inter-molecular spin-orbit coupling can cause an effective Dzyaloshinskii-Moriya interaction. Furthermore, we show that, even for an isolated pair of molecules the relative orientation of the molecules controls the nature of the Dzyaloshinskii-Moriya coupling. We show that interference effects also play a crucial role in determining the Dzyaloshinskii-Moriya interaction. Thus, we argue, that multi-nuclear organometallic complexes represent an ideal platform to investigate the effects of Dzyaloshinskii-Moriya interactions on quantum magnets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call