Abstract
Let s be a special point on a Shimura variety, and x a pre-image of s in a fixed fundamental set of the associated Hermitian symmetric domain. We prove that the height of x is polynomially bounded with respect to the discriminant of the centre of the endomorphism ring of the corresponding Z-Hodge structure. Our bound is the final step needed to complete a proof of the Andre-Oort conjecture under the conjectural lower bounds for the sizes of Galois orbits of special points, using a strategy of Pila and Zannier.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.