Abstract

In this paper, it is proved that if $B$ is a Brauer $p$ -block of a $p$ -solvable group, for some odd prime $p$ , then the height of any ordinary character in $B$ is at most $2b$ , where $p^b$ is the largest degree of the irreducible characters of the defect group of $B$ . Some other results that relate the heights of characters with properties of the defect group are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.