Abstract

The paper aims at proving global height estimates for Killing graphs defined over a complete manifold with non-empty boundary. To this end, we first point out how the geometric analysis on a Killing graph is naturally related to a weighted manifold structure, where the weight is defined in terms of the length of the Killing vector field. According to this viewpoint, we introduce some potential theory on weighted manifolds with boundary and we prove a weighted volume estimate for intrinsic balls on the Killing graph. Finally, using these tools, we provide the desired estimate for the weighted height function in the assumption that the Killing graph has constant weighted mean curvature and the weighted geometry of the ambient space is suitably controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.