Abstract

Changes in spinal column height have been observed in response to different stress environments including vibration, gravity inversion, space flight, traction, and increased loading. Alterations in spinal height are dependent on body forces, externally applied forces, and properties of the discs and are considered relevant to understanding the normal and pathologic behavior of the spine. This study presents a sagittal plane, viscoelastic model of the spine that quantified the height change behavior of the human spine subjected to axial compressive forces similar to those experienced during quiet standing. The two-dimensional spine model was idealized as a collection of 23 rigid vertebral bodies and 23 deformable intervertebral discs. Time-dependent height losses were modeled using axial compressive creep material properties based on in vitro measurements obtained from the literature. The model demonstrated an instantaneous loss in height of 11.7 mm (0.67% of body height) and a height loss of 19.6 mm (1.1% of body height) at the end of 8 h. Changes in sagittal profile were estimated to contribute to 12% of the overall height loss after 8 hours. Discs in the lumbar region lost the most height, but the contribution of the lumbar region to the total height loss was 32%. The height loss contribution of the thoracic region was higher (57%), presumably because of the increased number of discs contributing to the total height loss in this region. For degenerated discs, the model predicted a similar instantaneous height loss but a 28% greater height loss after 8 h. These results suggest that the majority of spinal height loss is a direct result of intervertebral disc deformation and about two thirds of the total height loss occurs immediately on axial loading of the spine. Based on these findings, diurnal height changes in the spine are predicted to be much greater than previously believed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.