Abstract

In the present study, the influence of spatial confinement on the bond length as well as dipole moment, polarizability and (hyper)polarizabilities of HeH+ ion was analyzed. The effect of spatial confinement was modelled by cylindrically symmetric harmonic oscillator potential, that can be used to mimic high pressure conditions. Based on the conducted research it was found that the spatial confinement significantly affects the investigated properties. Increasing the confinement strength leads to a substantial decrease of their values. This work may be of particular interest for astrochemistry as HeH+ is believed to be the first compound to form in the Universe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.