Abstract
• Atom probe tomography reveals radiation-induced segregation around He bubbles • Electron energy-loss spectroscopy measures He density and pressure inside bubbles • The inverse Kirkendall effect dominates RIS around over-pressurized He bubbles • He atoms retard Co diffusion via the vacancy mechanism and enhance Co segregation • Local chemical order of medium-/high-entropy alloys can be tailored via He bubbles Radiation-induced segregation (RIS) is a typical non-equilibrium process that can dramatically alter the behavior of defect sinks and material properties under irradiation. However, RIS mechanisms have been rarely studied around small He bubbles owing to the technical challenges involved in direct measurements of local chemistry. Here, using state-of-the-art atom probe tomography, we report the RIS behavior near He bubbles in the FeNiCoCr high-entropy alloy that indicates Co segregates most strongly, followed by weaker Ni segregation, whereas Fe and Cr are depleted almost to the same degree. Exceptionally, the magnitude of Co segregation around He bubbles is higher than previously measured values at voids and dislocation loops. Electron energy-loss spectroscopy was used to measure the He density and pressure inside individual bubbles. We demonstrate that He bubbles are over-pressurized at the irradiation temperature that could result in the vacancy bias and the subsequent vacancy-dominated RIS mechanism. First-principles calculations further reveal that there are repulsive interactions between He and Co atoms that may reduce the frequency of Co-vacancy exchange. As a result, He atoms likely retard Co diffusion via the vacancy mechanism and enhance the heterogeneity of RIS in Co-containing multicomponent alloys. These insights could provide the basis for understanding He effects in nuclear materials and open an avenue for tailoring the local chemical order of medium-and high-entropy alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.