Abstract

We show that hedonic price indexes may be biased when not all product characteristics are observed. We derive two primary sources of bias. The first is a classical selection problem that arises due to changes over time in the values of unobserved characteristics. The second comes from changes in the implicit prices of unobserved characteristics. Next, we show that the bias can be corrected for under fairly general assumptions using extensions of factor analysis methods. We test our methods empirically using a new comprehensive monthly data set for desktop personal computer systems. For this data we find that the standard hedonic index has a slight upward bias of approximately 1.4\% per year. We also find that omitting an important characteristic (CPU benchmark) causes a large bias in the index with standard methods, but that this bias is essentially eliminated when the proposed correction is applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.