Abstract

The hedging of a European-style contingent claim is studied in a continuous-time doubly Markov-modulated financial market, where the interest rate of a bond is modulated by an observable, continuous-time, finite-state, Markov chain and the appreciation rate of a risky share is modulated by a continuous-time, finite-state, hidden Markov chain. The first chain describes the evolution of credit ratings of the bond over time while the second chain models the evolution of the hidden state of an underlying economy over time. Stochastic flows of diffeomorphisms are used to derive some hedge quantities, or Greeks, for the claim. A mixed filter-based and regime-switching Black–Scholes partial differential equation is obtained governing the price of the claim. It will be shown that the delta hedge ratio process obtained from stochastic flows is a risk-minimizing, admissible mean-self-financing portfolio process. Both the first-order and second-order Greeks will be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.