Abstract
We consider discrete time hedging error of the American put option in case of brusque fluctuations in the price of assets. Since continuous time hedging is not possible in practice so we consider discrete time hedging process. We show that if the proportions of jump sizes in the asset price are identically distributed independent random variables having finite moments then the value process of the discrete time hedging uniformly approximates the value process of the corresponding continuous-time hedging in the sense of L1 and L2-norms under the real world probability measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.