Abstract

By backing or sandwiching a holey metal layer with or between isotropic dielectric slabs, additional peaks of transmission within the long-wavelength regime arise as a result of the induced transverse magnetic (TM) or transverse electric (TE) grounded dielectric modes. A similar control of the complex surface wave modes, and thus of the extraordinary transmission (ET) peaks, is demonstrated here via anisotropic slabs in the form of a fakir's bed of nails. However, it is shown that those ET peaks formed from TE modes are suppressed because of the inherent dispersion characteristics of the free-standing grounded pins. This allows the red-shifting of the ET for the polarization parallel to the larger in-plane period of the hole array, but unlike the dielectric isotropic slab configuration, the orthogonal polarization remains inhibited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.