Abstract

As the size and source of network traffic increase, so does the challenge of monitoring and analysing network traffic. Therefore, sampling algorithms are often used to alleviate these scalability issues. However, the use of high entropy data streams, through the use of either encryption or compression, further compounds the challenge as current state of the art algorithms cannot accurately and efficiently differentiate between encrypted and compressed packets. In this work, we propose a novel traffic classification method named HEDGE (High Entropy DistinGuishEr) to distinguish between compressed and encrypted traffic. HEDGE is based on the evaluation of the randomness of the data streams and can be applied to individual packets without the need to have access to the entire stream. Findings from the evaluation show that our approach outperforms current state of the art. We also make available our statistically sound dataset, based on known benchmarks, to the wider research community.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.