Abstract
The anaphase inhibitor securin plays a crucial role in regulating the timing of sister chromatid separation during mitosis. When sister chromatid pairs become bioriented, the E3 ligase anaphase promoting complex/cyclosome (APC/C) ubiquitylates securin for proteolysis, triggering sister chromatid separation. Securin is also implicated in regulating meiotic progression. Securin protein levels change sharply during cell cycle progression, enabling its timely action. To understand the mechanism underlying the tightly regulated dynamics of securin, we analyzed the subcellular localization of the securin IFY-1 during C. elegans development. IFY-1 was highly expressed in the cytoplasm of germ cells. The cytoplasmic level of IFY-1 declined immediately following meiosis I division and remained low during meiosis II and following mitoses. We identified a C. elegans homolog of another type of E3 ligase, UBE3C, designated ETC-1, as a regulator of the cytoplasmic IFY-1 level. RNAi-mediated depletion of ETC-1 stabilized IFY-1 and CYB-1 (cyclin B1) in post-meiosis I embryos. ETC-1 knockdown in a reduced APC function background caused an embryonic lethal phenotype. In vitro, ETC-1 ubiquitylates IFY-1 and CYB-1 in the presence of the E2 enzyme UBC-18, which functions in pharyngeal development. Genetic analysis revealed that UBC-18 plays a distinct role together with ETC-1 in regulating the cytoplasmic level of IFY-1 during meiosis. Our study reports a novel mechanism, mediated by ETC-1, that co-operates with APC/C to maintain the meiotic arrest required for proper cell cycle timing during reproduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.