Abstract

The Heckman selection model is perhaps the most popular econometric model in the analysis of data with sample selection. The analyses of this model are based on the normality assumption for the error terms, however, in some applications, the distribution of the error term departs significantly from normality, for instance, in the presence of heavy tails and/or atypical observation. In this paper, we explore the Heckman selection-t model where the random errors follow a bivariate Student’s-t distribution. We develop an analytically tractable and efficient EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters, with standard errors as a by-product. The algorithm has closed-form expressions at the E-step, that rely on formulas for the mean and variance of the truncated Student’s-t distributions. Simulation studies show the vulnerability of the Heckman selection-normal model, as well as the robustness aspects of the Heckman selection-t model. Two real examples are analyzed, illustrating the usefulness of the proposed methods. The proposed algorithms and methods are implemented in the new R package HeckmanEM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.