Abstract

The goal of this paper is to carry out some explicit calculations of the actions of Hecke operators on spaces of algebraic modular forms on certain simple groups. In order to do this, we give the coset decomposition for the supports of these operators. We present the results of our calculations along with interpretations concerning the lifting of forms. The data we have obtained is of interest both from the point of view of number theory and of representation theory. For example, our data, together with a conjecture of Gross, predicts the existence of a Galois extension of Q with Galois group G2(F5) which is ramified only at the prime 5. We also provide evidence of the existence of the symmetric cube lifting from PGL2 to PGSp4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.