Abstract

The mechanism of a recently discovered intramolecular Heck-type coupling of oximes with aryl halides (Angew. Chem. Int. Ed. 2007, 46, 6325) was systematically studied by using density functional methods enhanced with a polarized continuum solvation model. The overall catalytic cycle of the reaction was found to consist of four steps: oxidative addition, migratory insertion, beta-H elimination, and catalyst regeneration, whereas an alternative base-promoted C-H activation pathway was determined to be less favorable. Migratory insertion was found to be the rate determining step in the catalytic cycle. The apparent activation barrier of migratory insertion of the (E)-oxime was +20.5 kcal mol(-1), whereas the barrier of (Z)-oxime was as high as +32.7 kcal mol(-1). However, (Z)-oxime could isomerize to form the more active (E)-oxime with the assistance of K(2)CO(3), so that both the (E)- and (Z)-oxime substrates could be transformed to the desired product. Our calculations also indicated that the Z product was predominant in the equilibrium of the isomerization of the imine double bond, which constituted the reason for the good Z-selectivity observed for the reaction. Furthermore, we examined the difference between the intermolecular Heck-type reactions of imines and of olefins. It was found that in the intermolecular Heck-type coupling of imines, the apparent activation barrier of migratory insertion was as high as +35 kcal mol(-1), which should be the main obstacle of the reaction. The analysis also revealed the main problem for the intermolecular Heck-type reactions of imines, which was that the breaking of a C=N pi bond was much more difficult than the breaking of a C=C pi bond. After systematic examination of a series of substituted imines, (Z)-N-amino imine and N-acetyl imine were found to have relatively low barriers of migratory insertion, so that they might be possible substrates for intermolecular Heck-type coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.