Abstract

In this paper, we observe some important aspects of Hebbian and error-correction learning rules for complex-valued neurons. These learning rules, which were previously considered for the multi-valued neuron (MVN) whose inputs and output are located on the unit circle, are generalized for a complex-valued neuron whose inputs and output are arbitrary complex numbers. The Hebbian learning rule is also considered for the MVN with a periodic activation function. It is experimentally shown that Hebbian weights, even if they still cannot implement an input/output mapping to be learned, are better starting weights for the error-correction learning, which converges faster starting from the Hebbian weights rather than from the random ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.