Abstract

In this paper we consider a stochastic model of perpetuity-type. In contrast to the classical affine perpetuity model of Kesten (1973) and Goldie (1991) all discount factors in the model are mutually independent. We prove that the tails of the distribution of this model are regularly varying both in the univariate and multivariate cases. Due to the additional randomness in the model the tails are not pure power laws as in the Kesten–Goldie setting but involve a logarithmic term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.