Abstract

This study evaluated nine stripping PSA cycle configurations, all with a heavy reflux (HR) step, some with a light reflux (LR) step, and some with a recovery (REC) or feed plus recycle (F+R) step, for concentrating CO2 from stack and flue gas at high temperature (575 K) using a K-promoted HTlc. Under the process conditions studied, the addition of the LR step always resulted in a better process performance; and in all cases, the addition of a REC or F+R step surprisingly did not affect the process performance except at low feed throughputs, where either cycle step resulted in a similar diminished performance. The best cycle based on overall performance was a 5-bed 5-step stripping PSA cycle with LR and HR from countercurrent depressurization (CnD) (98.7% CO2 purity, 98.7% CO2 recovery and 5.8 L STP/hr/kg feed throughput). The next best cycle was a 5-bed 5-step stripping PSA cycle with LR and HR from LR purge (96.5% CO2 purity, 71.1% CO2 recovery and 57.6 L STP/hr/kg feed throughput). These improved performances were caused mainly by the use of a very small purge to feed ratio (γ=0.02) for the former cycle and a larger one (γ=0.50) for the latter cycle. The former cycle was good for producing CO2 at high purities and recoveries but at lower feed throughputs, and the latter cycle was useful for obtaining CO2 at high purities and feed throughputs but at lower recoveries. The best performance of a 4-bed 4-step stripping PSA cycle with HR from CnD was disappointing because of low CO2 recoveries (99.2% CO2 purity, 15.2% CO2 recovery and 72.0 L STP/hr/kg feed throughput). This last result revealed that the recoveries of this cycle would always be much lower than the corresponding cycles with a LR step, no matter the process conditions, and that the LR step was very important to the performance of these HR cycles for this application and process conditions studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call