Abstract

AbstractTo optimize flood management, it is crucial to determine whether rain will fall within a river basin. This requires very fine precision in prediction of rainfall areas. Cloud data assimilation has great potential to improve the prediction of precipitation area because it can directly obtain information on locations of rain systems. Clouds can be observed globally by satellite‐based microwave remote sensing. Microwave observation also includes information of latent heat and water vapor associated with cloud amount, which enables the assimilation of not only cloud itself but also the cloud‐affected atmosphere. However, it is difficult to observe clouds over land using satellite microwave remote sensing, because their emissivity is much lower than that of the land surface. To overcome this challenge, we need appropriate representation of heterogeneous land emissivity. We developed a coupled atmosphere and land data assimilation system with the Weather Research and Forecasting Model (CALDAS‐WRF), which can assimilate soil moisture, vertically integrated cloud water content over land, and heat and moisture within clouds simultaneously. We applied this system to heavy rain events in Japan. Results show that the system effectively assimilated cloud signals and produced very accurate cloud and precipitation distributions. The system also accurately formed a consistent atmospheric field around the cloud. Precipitation intensity was also substantially improved by appropriately representing the local atmospheric field. Furthermore, combination of the method and operationally analyzed dynamical and moisture fields improved prediction of precipitation duration. The results demonstrate the method's promise in dramatically improving predictions of heavy rain and consequent flooding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.