Abstract

The two-orbital Hubbard model with the Hund coupling is investigated in a metallic phase close to the Mott insulator. We calculate the one-particle spectral function and the optical conductivity within dynamical mean field theory, for which the effective impurity problem is solved by using the non-crossing approximation. For a metallic system close to quarter filling, a heavy quasi-particle band is formed by the Hubbard interaction, the effective mass of which is not so sensitive to the orbital splitting and the Hund coupling. In contrast, a heavy quasi-particle band near half filling disappears in the presence of the orbital splitting, but is induced again by the introduction of the Hund coupling, resulting in a different type of heavy quasi-particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.