Abstract

We use Heavy Quark Effective Theory (HQET) techniques to parametrize certain non-perturbative effects related to quantum fluctuations that put both heavy quark and antiquark in quarkonium almost on shell. The large off-shell momentum contributions are calculated using Coulomb type states. The almost on-shell momentum contributions are evaluated using an effective 'chiral' lagrangian which incorporates the relevant symmetries of the HQET for quarks and antiquarks. The cut-off dependence of both contributions matches perfectly. The decay constants and the matrix elements of bilinear currents at zero recoil are calculated. The new non-perturbative contributions from the on-shell region are parametrized by a single constant. They turn out to be $O(\alpha^2/\Lambda_{QCD} a_{n})$, $a_{n}$ being the Bohr radius and $\alpha$ the strong coupling constant, times the non-perturbative contribution coming from the multipole expansion (gluon condensate). We discuss the physical applications to $\Upsilon$, $J/\Psi$ and $B_{c}$ systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.