Abstract

Summary A hybrid process is developed and optimized for heavy-oil recovery that combines moderate reservoir heating and chemical enhanced oil recovery in the form of alkali/cosolvent/polymer flood. The process is simulated by use of a model derived from existing laboratory and pilot data of a 5,000-cp heavy-oil field. It is found that hot waterflooding is efficient in heating the reservoir only when high early injectivity is achievable. This may not be the case if incipient fluid injectivity is low and/or long, continuous, horizontal shale baffles are present. To remedy the former, an electrical-preheating period is devised, whereas switching to a horizontal flood could overcome the latter. Once the reservoir temperature is raised sufficiently, a moderately unstable alkali/cosolvent/polymer flood is capable of mobilizing and displacing oil. A best combined strategy for efficient reservoir heating, high oil recovery, and cost effectiveness is found to involve reducing the oil viscosity to values of approximately 300–500 cp and combining a degree of mobility control and low interfacial tension as recovery mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.