Abstract

Thermal and miscible methods are commonly used for in situ recovery of heavy oil and bitumen. Both techniques have their own limitations and benefits. However, these methods can be combined by co-injecting solvent with steam or injecting solvent into a pre-heated reservoir. The current work was undertaken to study the performance of solvents at higher temperatures for heavy oil/bitumen recovery. Glass bead packs and Berea sandstone cores were used in the experiments to represent different types of pore structures, porosity and permeability. After saturating with heavy oil, the samples were exposed to the vapor of paraffinic solvents (propane and butane) at a temperature above the boiling point of the solvent, and a constant pressure of 1500 kPa. A mechanical convection oven was used to maintain constant temperature across the setup. The setup was designed in such a way that a reasonably long sample (up to 30 cm) can be tested to analyze the gravity effect. The oil recovered from each of these experiments was collected using a specifically designed collection system and analyzed for composition, viscosity and asphaltene content. The final amount of oil recovered in each case (recovery factor but not extraction rate) was also analyzed and the quantity and nature of asphaltene precipitated with each of the tested solvents under the prevailing temperature and pressure of the experiment was reported. Optimal conditions for each solvent type were identified for the highest ultimate recovery. It was observed that recovery decreased with increasing temperature and pressure of the system for both solvents, and that the best results were found when experimental temperature is only slightly higher than the saturation temperature of the solvent used. It was also noticed that butane diluted the oil more than propane which resulted in lower asphaltene content and viscosity of oil produced with butane as a solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.