Abstract

Neutrinos are probably the most mysterious particles of the Standard Model. The mass hierarchy and oscillations, as well as the nature of their antiparticles, are currently being studied in experiments around the world. Moreover, in many models of the New Physics, baryon asymmetry or dark matter density in the universe are explained by introducing new species of neutrinos. Among others, heavy neutrinos of the Dirac or Majorana nature were proposed to solve problems persistent in the Standard Model. Such neutrinos with masses above the EW scale could be produced at future linear e+e- colliders, like the Compact LInear Collider (CLIC) or the International Linear Collider (ILC). We studied the possibility of observing production and decays of heavy neutrinos in the qql final state at the ILC running at 500 GeV and 1 TeV and the CLIC running at 3 TeV. The analysis is based on the WHIZARD event generation and fast simulation of the detector response with DELPHES. Dirac and Majorana neutrinos with masses from 200 GeV to 3.2 TeV are considered. Estimated limits on the production cross sections and on the neutrino-lepton coupling are compared with the current limits coming from the LHC running at 13 TeV, as well as the expected future limits from hadron colliders. Impact of the gamma-induced backgrounds on the experimental sensitivity is also discussed. Obtained results are stricter than other limit estimates published so far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.