Abstract

In order to discuss the content distributions and fluxes of heavy metals in suspended matters during a tidal cycle in the turbidity maximum around the Changjiang (Yangtze) Estuary, the contents of heavy metals (Zn, Pb, Cd, Co and Ni) have been analyzed. During a tidal cycle, the average contents of heavy metals are in the order of Zn>Ni>Pb>Co≫Cd. The average contents in ebb tide are generally higher than that in flood tide. However, at the inshore Sta. 11, influenced by the contamination from the nearby waste treatment plant, the average contents of Zn and Ni in flood tide are higher than those in ebb tide and at the offshore Sta. 10, the content of Cd in flood tide higher than that in ebb tide due to marine-derived materials. The five heavy metals, mainly terrigenous, are transported towards east-northeast, and settle down with suspended matters in the area between Sta. 11 and Sta. 10. Influenced by marine-derived materials, the flux value of Cd does not alter significantly with obviously changing in flux direction towards northwest. The source of heavy metals, the salinity of water and the concentration of suspended matters are the main factors controlling the content distributions of heavy metals during a tidal cycle. There is a positive correlation between the contents of heavy metals (Zn, Pb, Co and Ni) and the salinity of water, while the opposite correlation between the contents and the concentrations of suspended matters. Because of marine-derived materials, the content of Cd is not correlated with the concentration of suspended matters and the salinity of water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.