Abstract

AbstractThe voltammetric methods are very suitable and versatile techniques for the simultaneous metal determination in complex matrices. The present work, regarding the sequential determination of Cu(II), Pb(II), Cd(II), Zn(II) by square‐wave anodic stripping voltammetry (SWASV), As(III), Se(IV) by square‐wave cathodic stripping voltammetry (SWCSV) and Mn(II), Fe(III) by square‐wave voltammetry (SWV) in matrices involved in foods and food chain as wholemeal, wheat and maize meal, are an interesting example of the possibility to sequentially determine each single element in real samples. Besides the set up of the analytical method, particular attention is aimed either at the problem of possible signal interference or to show that, using the peak area Ap as instrumental datum, it is possible to achieve lower limits of detection. The analytical procedure was verified by the analysis of the standard reference materials: Wholemeal BCR‐CRM 189, Wheat Flour NIST‐SRM 1567a and Rice Flour NIST‐SRM 1568a. Precision, as repeatability, and accuracy, expressed as relative standard deviation and relative error, respectively, were lower than 6% in all cases. In the presence of reciprocal interference, the standard addition method considerably improved the resolution of the voltammetric technique. Once set up on the standard reference materials, the analytical procedure was transferred and applied to commercial meals sampled on market for sale. A critical comparison with spectroscopic measurements is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call