Abstract

The coexistence of heavy metals (HMs) and petroleum hydrocarbons (PHs) exacerbates ecotoxicity and impair the drivers of eco-functionalities that stimulate essential nutrients for the productivity of the impacted environment. Profiling the bacteria that stem the ecological impact via HMs sequestration and PHs catabolism with nitrogen fixation is imperative to bioremediation of the polluted sites. The sediment of site that was consistently contaminated with industrial wastewaters was analysed for ecological toxicants and the bacterial strains that combined HMs resistance with PHs catabolism in a nitrogen-limiting system were isolated from the sediment and characterized. The geochemistry of the samples revealed the co-occurrence of the above-benchmark concentrations of HMs with the derivatives of hydrocarbons. Notwithstanding, nickel and mercury (with 5% each of the total metal concentrations in the polluted site) exhibited probable effect concentrations on the biota and thus hazardous to the ecosystem. Approx. 31% of the bacterial community, comprising unclassified Planococcaceae, unclassified Bradyrhizobiaceae, Rhodococcus, and Bacillus species, resisted 160µmol Hg2+ in the nitrogen-limiting system within 24h post-inoculation. The bacterial strains adopt volatilization, and sometimes in combination with adsorption/bioaccumulation strategies to sequester Hg2+ toxicity while utilizing PHs as sources of carbon and energy. Efficient metabolism of petroleum biomarkers (> 87%) and Hg2+ sequestration (≥ 75% of 40µmol Hg2+) displayed by the selected bacterial strains portend the potential applicability of the bacilli for biotechnological restoration of the polluted site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.