Abstract

Sewage sludge application to semiarid grassland may represent a beneficial means of utilizing this waste product for restoration of degraded sites. Consequently, dried municipal sewage sludge was applied at three rates (22.5, 45, and 90 Mg ha−1) to a degraded semiarid grassland soil in order to determine the effects of sludge amendments on forage productivity, soil heavy metal content, and metal uptake by blue grama (Bouteloua gracilis).Soil and plant properties in control and amended plots were measured after 1, 2, and 5 growing seasons.Soil nutrients increased linearly with increased sludge application in the first two growing seasons. Consequently, forage quality and total production of blue grama improved significantly over the unamended control as the tissue levels of N, P, K, and crude protein increased. Cadmium and Pb in the sludge-treated plots did not increase significantly over the control after 1 and 2 growing seasons. Levels of DTPA-extractable soil micronutrients (Cu, Fe, Mn, Zn) increased linearly with increased sludge application rate to soil concentrations recommended for adequate plant growth. Soil N, P, and K concentrations remained higher in the sludge-amended soils after 5 growing seasons, while Cu and Cd increased to slightly above desireable limits as the soil pH decreased to 7.4 and 7.0 in the 45 and 90 Mg ha−1 treatments, respectively. However, with the exception of Mn which remained within desirable limits, metal concentrations (including Cu and Cd) in blue grama tissue were not significantly different from the control treatment after five growing seasons. Based on soil and plant tissue metal concentrations, it appears that sludge applied at rates between 22.5 and 45 Mg ha−1 will maintain the most favorable nutrient levels coupled with significant improvements in forage production in this semiarid grassland environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.