Abstract
This present study evaluated the plasmid incidence in bacteria and their genetic elements in heavy metals tolerant-antibiotics resistant microbes isolated from petroleum hydrocarbon polluted sites. The plasmid isolation was carried out using the fermentas Genejet plasmid miniprep kit (Thermofisher Scientific Inc, USA). Screening for class 1, 2, and 3 integrons, incompatibility group P testing, plasmid replicon typing, plasmid restriction analysis, and other analysis was performed using standard laboratory procedures. Plasmid incidences were higher among multiple heavy metal-tolerant bacterial species from hydrocarbon-polluted sites than those from the pristine site. Further, Class 1 integron incidence was significantly higher among the integrons in heavy metal tolerant bacterial isolates isolated from the polluted ecosystems than those from pristine ecosystems. Plasmid replicon type of bacteria with multiple heavy metal tolerance and antibiotics resistance indexes revealed that IncN plasmid replicon type carrying class 1 integron. This encodes resistance to sulphamethazole/trimethoprim, ampicillin, and tolerance to Cd, Ni, and Cu in Klebsiella pneumoniae isolate from petroleum-polluted soil. This is the first report of IncN plasmid in environmental bacteria in Nigeria, particularly from petroleum polluted environment. The conjugation experiment confirmed the possible transferability of antibiotic resistance determinants among isolates in polluted ecosystems. From the results of this study, it can be concluded that petroleum hydrocarbon pollution vis-a-vis heavy metal selective pressure with the abundance of mobile genetic elements amongst isolates from polluted ecosystems could contribute to the dispersing of antibiotic resistance genes, thus posing a serious public health concern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Biology and Agricultural Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.