Abstract

While sewage irrigation relieves water shortages in Northern China, its excessive application triggers a series of environmental problems, such as heavy-metal pollution. Soil profile and river sediment profile samples from the sewage irrigation area (SIA) were collected by selecting the farmlands in which sewage irrigation activity has been reported since the 1960s, around Huiji River (HJR) and Huafei River (HFR) in Kaifeng, Henan Province, China, as research areas. In this study, the total amount of heavy metals (Cr, Cd, Pb, Mn, Zn, and Ni) and the heavy-metal speciation analysis using the modified BCR sequential extraction method were used to evaluate the impacts of wastewater on agricultural soils and the potential risk. Furthermore, the least contaminated Cr (VI) was selected for the study of adsorption characteristics to determine the environmental capacity of soils for heavy metals when the composition of wastewater changes under long-term effluent irrigation conditions. The results show that: (1) the concentrations of heavy metals in soil continuously decreased with depth, while the opposite was observed in sediment, reflecting the continuous improvement in water quality over the historical period; (2) In the topsoil, the mean concentrations (mg·kg−1) in rank order are as follows: Mn (588.68) > Zn (284.21) > Pb (99.76) > Cr (76.84) > Ni (34.71) > Cd (3.25), where Cd exceeded the control value by 3.15 times around HFR, and sediment samples also showed higher heavy metal concentrations in HFR than in HJR; (3) Speciation distribution and risk assessment code (RAC) indicate that Mn and Cd were at medium risk and that Cd warrants attention due to its being a non-essential toxic element in humans; (4) The adsorption rates of soil in various layers in different profiles within SIAs for Cr (VI) gradually increased with the increasing initial content of Cr (VI). Among the three isothermal adsorption models, the fit result obtained by the Langmuir equation was superior to those obtained by the Freundlich equation and the linear equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call