Abstract

The removal of four selected heavy metals (Cu, Cd, Pb and Zn) has been assessed in an upflow anaerobic packed bed reactor filled with porous volcanic rock as an adsorbent and an attachment surface for bacterial growth. Two different feeding regimes were applied using low (5 mg L−1 of heavy metal each) and high (10 mg L−1 of heavy metal each) strength wastewater. After a start-up and acclimatization period of 44 days, each regime was operated for a period of 10 days with a hydraulic retention time of one day. Good removal efficiencies of at least 86% were achieved for both the low and high strength wastewater. A subsequent water hyacinth pond with a hydraulic retention time of one day removed an additional 61% Cd, 59% Cu, 49% Pb and 42% Zn, showing its importance as a polishing step. The water hyacinth plant in the post-treatment step accumulated heavy metals mainly in the root system. Overall metal removal efficiencies at the outlet of the integrated system were 98% for Cd, 99% for Cu, 98% for Pb and 84% for Zn. Therefore, the integrated system can be used as an alternative treatment system for metal-polluted wastewater, especially in developing countries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call