Abstract

Due to high metal toxicity, mixed municipal solid waste (MSW) compost is difficult to use. This study detected the presence of heavy metals (Cd, Cu, Pb, Ni, and Zn) in MSW compost through mineralogical analysis using X-ray diffraction (XRD) and performed topographical imaging and elemental mapping using a scanning electron microscope and energy dispersive X-ray analysis (SEM-EDX). Ethylenediaminetetraacetic acid (EDTA), a typical chelator, is tested to remove heavy metals from Indian MSW compost (New Delhi and Mumbai). It deals with two novel aspects, viz., (i) investigating the influence of EDTA-washing conditions, molarity, dosage, MSW compost-sample size, speed, and contact time, on their metal removal efficiencies, and (ii) maximizing the percentage removal of heavy metals by determining the optimal process control process parameters. These parameters were optimized in a batch reactor utilizing Taguchi orthogonal (L25) array. The optimization showed that the removal efficiencies were 96.71%, 47.37%, and 49.94% for Cd, Pb, and Zn in Delhi samples, whereas 45.55%, 79.52%, 59.63%, 82.31%, and 88.40% for Cd, Cu, Pb, Ni, and Zn in Mumbai samples. Results indicate that the removal efficiency of heavy metals was greatly influenced by EDTA-molarity. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of hydroxyl group, which aids heavy metal chelation. The results reveal the possibility of EDTA to reduce the hazardous properties of MSW compost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.