Abstract

Grasslands provide a range of valuable ecosystem services, but they are also particularly fragile ecosystems easily threatened by human activities, such as long-term open-pit mining and related industrial activities. In grassland area, dust containing heavy metal(loid)s generated by mines may further migrate to remote places, but few studies have focused on the long-range transport of contaminants as an important pollution source. In the present study, one of the largest and most intact grassland ecosystems, the Mongolian-Manchurian steppe, was selected to investigate its pollution status and track potential sources. A total of 150 soil samples were collected to explore reginal distribution of nine heavy metal(loid)s that has potential risk in grassland. We conducted a combined multi-variant analysis of positive matrix factorization (PMF) and machine learning, which foregrounded the source of long-range transport of contaminants and inspired the hypothesis of a novel stochastic model to describe contaminants distribution. Results showed four different sources accounting for 44.44% (parent material), 20.28% (atmospheric deposition), 20.39% (farming), and 14.89% (transportation) of the total concentration, respectively. Factor 2 indicated that coal surface mining lead to a significant enrichment of As and Se with their concentration far above the global average level, which was different from other reported grassland areas. Machine learning results further confirmed that atmospheric and topographic features were their contamination controlling factors. The model results proposed that As, Se and Cu released by surface mining will be transported over long distance under prevailing monsoon, until finally deposited in the windward slope of mountain due to terrain obstruction. The long-range transport by wind and deposition of contaminants may be a prevailing phenomenon in temperate grassland, making it a pollution source that cannot be ignored. Evidence from this study reveals the urgency of precautions for fragile grassland ecosystems around industrial areas and provides a basis for its management and risk control policies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call