Abstract

The presence of heavy metals (HMs) in the environment is a major threat for humans. Magnetic proxies provide a rapid method for assessing the degree of HM pollution in environment. We have studied farmland soil irrigated with polluted river water in the vicinity of a steel plant in Loudi city (Hunan Province, China) to test the efficiency of magnetic methods for detecting the degree of HM pollution. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these farmland soils. Enhanced magnetic concentration values were found in the upper arable soil horizon (0–20 cm), which is related to the presence of spherical ∼10 to 30 μm sized magnetite particles. The spatial distribution of magnetic concentration and HM contents in the farmland soils matches with the spatial pattern of these parameters in river sediments. These findings provide evidence that HM pollution of the farmland soil is mainly caused by irrigation with wastewater. HMs Zn, Pb, Cu, Cd, Co, Ni, V are well correlate with magnetic susceptibility (χ). The pollution load index (PLI) of all nine anthropogenic HMs (including also Cr and Mo) and log10(χ) are significantly correlated. Using the resulting linear PLI−log10(χ) function, values of χ can serve as a convenient tool for semi-quantifying the degree of HM pollution in the uppermost ∼20 cm of the studied farmland soils. These findings suggest that magnetic methods can generally serve as a convenient tool for detecting and mapping HM pollution in farmland soil irrigated with wastewater from sites nearby heavy industrial activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.