Abstract

The heavy metal concentration of soil samples often exhibits a skewed distribution, especially for soil samples from mining areas with an extremely high concentration of heavy metals. In this study, to model soil contamination in mining areas using reflectance spectroscopy, the skewed distribution was corrected and heavy metal concentration estimated. In total, 46 soil samples from a mining area, along with corresponding field soil spectra, were collected. Laboratory spectra of the soil samples and the field spectra were used to estimate copper (Cu) concentration in the mining area. A logarithmic transformation was used to correct the skewed distribution, and based on the sorption of Cu on spectrally active soil constituents, the spectral bands associated with iron oxides were extracted from the visible and near-infrared (VNIR) region and used in the estimation. A genetic algorithm was adopted for band selection, and partial least squares regression was used to calibrate the estimation model. After transforming the distribution of Cu concentration, the accuracies (R2) of the estimation of Cu concentration using laboratory and field spectra separately were 0.94 and 0.96. The results indicate that Cu concentration in the mining area can be estimated using reflectance spectroscopy following correction of skewed distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.