Abstract
Mining activities in addition to the geology of Mustafakemalpaşa catchment have for long been linked to its deteriorating water and sediment quality. This study assessed contamination levels of heavy metals and other major elements (Pb, As, B, Cd, Zn, Cr, Mo, Co, Ni, Cu, and Ag) in surface sediments of the area, and identified possible pollution sources. Sediment quality indicators, such as contamination factor (CF), enrichment factor (EF), geo-accumulation index (Igeo) and sediment quality guidelines were used, in addition to multivariate statistical technics; Pearson Correlation Matrix (PCM), Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). The highest contamination (annual average > 110 mg kg-1) was revealed by B, Cr, Ni, Zn and As. Moreover, As, Cd and Ni levels exceeded their respective probable effect concentrations (PEC), posing a potential negative impact to biota. The highest Igeo values were recorded for Cr, B, Ni, As and Zn, and occurred near urban settlements and mining sites, particularly of coal and chromium. The present study also suggests use of site rank index (SRI) as an alternative to pollution load index (PLI), since the former is derived from the data of interest and eliminates arbitrary classifications. The sources of heavy metals in the sediments were attributed to fly ashes of coal-powered plants, urban waste leachate and weathering of sulfide ore minerals for Pb, Zn and Cu; urban-industrial wastes and mining wastes for Ni. Although Cr, As, Cd and B were ascribed to natural occurrence, their presences in river sediment is accelerated by mining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.