Abstract

The Tessier sequential extraction scheme (SES) was applied to sediments from the Odiel river catchment (Iberian Pyritic Belt, SW of Spain), one of the most acid rivers on Earth, to assess the chemical association (exchangeable, carbonatic, bound to manganese and iron oxides, bound to organic matter and residual mineral) of heavy metals (Zn, Cd, Pb, Cu, Cr, Mn, Ni, Fe, and Hg). Sediments are very heterogeneous in their textural characteristics, showing different grain size. Twenty-seven samples were studied from from areas along the Odiel River, from the source to the mouth, with special interest in the Odiel Marshes Natural Park due to its ecological significance. Samples were classified as sandy (especially at the river mouth with low iron oxide and organic matter content) and clay-silty (in the middle of the river catchment with high iron oxide content). The numerous sandy samples with low pH values explain the low levels of metals upstream, although potential metals contributions arise from mining and ore. However, the presence of sulfate in the mining area and carbonate at the mouth may explain the high presence of lead and iron in these sandy zones. Some percentage of mobile Ni, Cu, and Zn were detected in the mining area, but the elevated relative percentage of exchangeable Cd in the estuary is even more remarkable. The percentage of Zn bound to carbonate is considerable in the catchment but especially in the estuary. However, Cu is only detected in the carbonate phase downstream, in spite of the low concentration of carbonate, which represents a drawback in the application of the Tessier SES to these types of samples. Finally, relatively high percentages of residual, non-mobile, Hg and Pb were observed, in the estuarine and mining areas, respectively. Sand, lime, and clay fractions of representative samples from Areas I, II, and III were used in a metal speciation study. Mainly, the elements analyzed had accumulated in the non-residual fractions. In the mining area of the Pyrite Belt, the elements analyzed are mainly bound to Fe–Mn oxides (Fe + Mn + Cu + Cr + Pb + Mn ± Zn) and the organic matter/sulfide fraction (Ni + Zn + Hg ± Cd), independent of sediment grain size. In conclusion, we show that the results of the study of chemical speciation in sediments from acid rivers are independent of the sediment grain size considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.