Abstract

In recent years, thermal plasma technology has been widely used in the harmless and resource-efficient treatment of solid waste (SW). This study investigates the migration behaviors of heavy metals during the thermal plasma treats SW to obtain the interphase structure change regimes of heavy metals. The transformation of SW under high-temperature environments was analyzed by Fluent simulation, and the composition of the crystalline phases and heavy metal content of the post-treatment slags were studied through a combination of XRD, SEM, and heavy metal leaching experiments. The results show that the thermal plasma provides a melting zone temperature of more than 4000 K, and the treated slag is mostly an amorphous solid composed of glassy Si-O mesh, which effectively encapsulates heavy metals and reduces their leaching rate. Additional analysis of the migration and transformation of heavy metals during thermal plasma treatment revealed that solid-phase heavy metals primarily took the form of sulphides and sulphates, while liquid- and gas-phase heavy metals were mostly oxides and chlorides. Simultaneously, Economic analysis results showed that the thermal plasma treats SW economically with an Energetic efficiency of up to 76.7%. The results of this study providing new insights into thermal plasma treatment SW research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.