Abstract

The spawning areas for many marine invertebrates are in intertidal zones which can be exposed to surface water run-off containing heavy metals. The cellular shape changes and cleavage patterns of Ilyanassa embryos greatly resemble those of bivalve mollusks, such as Mytilus edulis, that occur in the same intertidal areas. Determining the concentrations of heavy metals tolerated by the molluscan embryos inhabiting such clam and mussel beds therefore is of some economic significance. Moreover, such research may providedata on the heavy metal effects on the cytoskeleton. There is increasing evidence that components of the cytoskeleton, directly or indirectly, are targets for toxic agents. Polar lobe formation is a cellular shape change that resembles cytokinesis. It is seen in the fertilized eggs of many marine mollusks. Recent data with inorganic and organic Ca/sup 2 +/ antagonists suggest that both polar lobe formation and cytokinesis utilize Ca/sup 2 +/ released from sequestered, intracellular sites. Both of these cellular constrictions are associated with microfilaments and are preceded by activation steps requiring microtubules. The data presented below suggest that several heavy metals affect the microfilament-dependent steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.