Abstract

The biosorption mechanism is an alternative for chemical precipitation and ultrafiltration which have been employed to treat heavy metal contamination with a limited success. In the present study, three species of Bacillus which were isolated from solar salterns were screened for their detoxification potential of the heavy metals, lead, chromium, and copper, by biosorption. Biosorption potential of each isolate was determined by Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), and Energy Dispersive Spectroscopy (EDS) as the amount of metal present in the medium after the treatment with the isolates. Bacterial isolates, Bacillus licheniformis NSPA5, Bacillus cereus NSPA8, and Bacillus subtilis NSPA13, showed significant level of lead biosorption with maximum of 87–90% by Bacillus cereus NSPA8. The biosorption of copper and chromium was relatively low in comparison with lead. With the obtained results, we have concluded that the bacterial isolates are potential agents to treat metal contamination in more efficient and ecofriendly manner.

Highlights

  • Heavy metal(s) are widespread pollutants of environmental concern as they are nondegradable and persistent [1]

  • These 14 bacterial isolates were selected on the basis of cultural characteristics such as colony size, colour, form, margin, and elevation and named as NSPA1, NSPA2, NSPA3, NSPA4, NSPA5, NSPA6, NSPA7, NSPA8, NSPA9, NSPA10, NSPA11, NSPA12, NSPA13, and NSPA14

  • Based on Bergey’s manual of systemic bacteriology, those fitting the description of Bacillus sp. and growth characteristics of haloalkaliphilic nature were selected for molecular characterisation [24] and subsequently for biosorption studies

Read more

Summary

Introduction

Heavy metal(s) are widespread pollutants of environmental concern as they are nondegradable and persistent [1]. It is well perceived that there is a permissible limit of each metal, above which they are generally hazardous and some are even toxic [2]. It is estimated that over one billion human beings are currently exposed to elevated concentrations of toxic metals and metalloids in the environment and several million people may be suffering from subclinical metal poisoning. Adverse effect of heavy metals includes suppression of the immune system and carcinogenicity, neurotoxicity, mainly in children, and inhibition of the activity of some critical enzymes related to synthesis of vital biomolecules along with accumulation in the body of different organisms causing biomagnifications [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call