Abstract
Indiscriminate disposal of waste water by industries and use of effluent from the effluent channel for irrigation purpose in the peri-urban areas poses a major threat to food safety. The key objective of this study was therefore to estimate the heavy metal content of foods grown around the city of Vadodara and assess the health risk in the study population. A total of 40 foods and 17 water samples were assayed for heavy metal content using the AAS. The results indicated that the mean Arsenic content of cereals (4ppm), pulses (2.5ppm), other vegetables (1.95ppm), green leafy vegetables (5ppm) and roots and tubers (2.5ppm) exceeded the critical values. Cereals (1.65ppm), fruits (1.98ppm) and curd (2.8ppm) exceeded the critical limits for Cadmium. Mean Arsenic (3.79ppm) and Lead (0.17ppm) content in drinking water was higher than the limits. Health risk assessed using Total Daily Intake (TDI), Provisional Tolerable Daily Intake (PTDI), Provisional Tolerable Weekly Intake (PTWI), provisional tolerable monthly intake (PTMI), Daily Intake of Metals(DIM), Health Risk Index (HRI) and Total hazard Quotient (THQ) for Cadmium, Lead and Arsenic indicated that the study population was at risk of heavy metal toxicity.
Highlights
Heavy metals find their entry into food from natural sources like soil, air and water through wastewater irrigation, solid waste disposal, mining, smelting, sludge applications, vehicular exhaust, fertilizers, fungicides and industrial activities1. (Muhammed et al, 2008). 2 (Radwan and Salama, 2006)
As heavy metal bioaccumulation increases in nutrition deprived state, developing countries with higher prevalence of under nutrition are at a greater risk of heavy metal toxicity
Arsenic content was highest in cereals followed by green leafy vegetables, pulse, other vegetables and lowest in milk and milk products
Summary
Heavy metals find their entry into food from natural sources like soil, air and water through wastewater irrigation, solid waste disposal, mining, smelting, sludge applications, vehicular exhaust, fertilizers, fungicides and industrial activities1. (Muhammed et al, 2008). 2 (Radwan and Salama, 2006). Lead ingested during period of fasting gets absorbed to a much greater extent than Lead ingested with food. In general, are nonbiodegradable, have long biological half-lives and have the potential for accumulation in the different body organs leading to acute as well as chronic toxic effects. The problem of heavy metal contamination is getting serious all over the world especially in developing countries. As heavy metal bioaccumulation increases in nutrition deprived state, developing countries with higher prevalence of under nutrition are at a greater risk of heavy metal toxicity. Most countries have established parameters for monitoring safe level of intake in terms of PTWI (Provisional Tolerable Weekly Intake) PTDI (Provisional Tolerable Daily Intake), PTMI (provisional tolerable monthly intake) for heavy metals with cumulative effect on human system and the same are revised periodically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.