Abstract

Contamination of food by heavy metals is a concern as consumption of contaminated food is one of the most likely human exposure routes to metals. Fufu is a delicacy in Ghana consumed mainly by the Akans. Human exposure to some heavy metals (Cr, Fe, Zn, Mn and Ni) through mechanically processed fufu consumption was analysed by atomic absorption spectrophotometer and ascertaining consumer awareness of potential exposure by questionnaire administration. A total of 30 milled and un-milled fufu samples (cassava and plantain) were sampled from Bomso, Kotei, Ayeduase, Ayigya and Kentikrono, all within Kumasi. The results showed that Fe and Zn levels after milling were elevated in the range: 2.816–7.297 and 0.753–7.529 mg/kg, respectively. The concentrations of Fe and Zn were below the Food and Agriculture Organization/World Health Organization (FAO/WHO) permissible limits except Zn concentration at Bomso. Cr, Mn and Ni were below the detection limit (0.05). Hazard quotients and indices were less than the US Environmental Protection Agency’s permitted level of one, indicating no possible harm to consumers. Findings from the questionnaire administration indicated a complete lack of knowledge on consumer exposure due to the food processing method.

Highlights

  • As a typical carbohydrate food crop, cassava grows in soils with marginal nutrition (Aerni 2006)

  • The results show an increase in Fe and Zn concentration after milling, indicating that the locally fabricated fufu pounding mill added some metal concentrations due to friction, wearing and tearing of the grinding plate as the food samples come in contact (Yahaya et al 2010)

  • The study determined the concentrations of heavy metals in mechanically milled fufu, the potential health risk to consumers, and the awareness of potential exposure to those metals through fufu milling

Read more

Summary

Introduction

As a typical carbohydrate food crop, cassava grows in soils with marginal nutrition (Aerni 2006). Fresh cassava root contains 75–80% moisture, 0.70–2.50% ash, 1.0% fibre, 0.1% fat and 2–3% protein and 32–35% carbohydrate (Abass et al 2018). Cassava roots contain small amounts of β-carotene, iron and zinc (Gegios et al 2010). Fresh cassava root undergoes fast spoilage within 48 to 72 h due to its high moisture content (Ashaye et al 2005; Awoyale et al 2018). Processing the roots into various products increases the shelf life and makes transportation to urban markets less expensive (Taiwo 2006).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call