Abstract
The impact of reservoir emptying on the concentrations of dissolved heavy metals (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in pore and surface waters was studied in the Aar Reservoir, a small reservoir in central Germany, during and after the emptying process. This study was conducted to observe binding changes within pore waters as well as the input of dissolved heavy metals in waters of the Aar Creek, what becomes possible when the reservoirs water table is removed and lake sediments become exposed. In pore waters, no clear shifting tendencies between dissolved and sorbed heavy metal fractions could be found after the completed sediment exposure. These relatively low dynamics in pore waters can be explained by the fine texture of the lake sediments, which are characterized by a high water holding capacity, what led to high remaining water contents and therefore slowed down the redox changes. A few days after the completed emptying, a general increase of dissolved heavy metal concentrations occurred in running waters of the Aar Creek as a result of pore water drainage. Here, element specific differences in mobilization and transportation abilities were found, what can be reconstructed by the ratio of dissolved heavy metals in pore and surface waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.