Abstract

Stimulation with heavy metals is known to induce calcium (Ca2+) mobilization in many cell types. Interference with the measurement of intracellular Ca2+ concentration by the heavy metals in cells loaded with Ca2+ indicator fura-2 is an ongoing problem. In this study, we analyzed the effect of heavy metals on the fura-2 fluorescence ratio in human SH-SY5Y neuroblastoma cells by using TPEN, a specific cell-permeable heavy metal chelator. Manganese chloride (30–300 µM) did not cause significant changes in the fura-2 fluorescence ratio. A high concentration (300 µM) of lead acetate induced a slight elevation in the fura-2 fluorescence ratio. In contrast, stimulation with cadmium chloride, mercury chloride or MeHg (3–30 µM) elicited an apparent elevation of the fura-2 fluorescence ratio in a dose-dependent manner. In cells stimulated with 10 or 30 µM cadmium chloride, the addition of TPEN decreased the elevated fura-2 fluorescence ratio to basal levels. In cells stimulated with mercury or MeHg, the addition of TPEN significantly decreased the elevation of the fura-2 fluorescence ratio induced by lower concentrations (10 µM) of mercury or MeHg, but not by higher concentrations (30 µM). Pretreatment with Ca2+ channel blockers, such as verapamil, 2-APB or lanthanum chloride, resulted in different effects on the fura-2 fluorescence ratio. Our study provides a characterization of the effects of several heavy metals on the mobilization of divalent cations and the toxicity of heavy metals to neuronal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call