Abstract

Samples of soils, rice plants, and the adult, long-winged, brown planthoppers, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), were collected from 18 sites of 9 regions in southern China. The concentrations of seven elements (Cu, Zn, As, Mo, Ag, Cd, and Pb) were measured using inductively coupled plasma mass spectrometry. Heavy metal mobility and bioaccumulation were analyzed in the rice plant-N. lugens system. The concentrations of Zn, As, Cd, and Pb in rice plants were positively correlated with their relevant concentrations in soil samples The bioconcentration factors of the seven elements in the rice plant-N. lugens system showed that the order of metal accumulation was Mo>Zn>Ag>Cd>Cu>Pb>As. In particular, Mo and Zn showed significantly high accumulation in N. lugens. A cluster analysis and factor analysis showed that the bioaccumulation of these seven elements in the rice plant-N. lugens system could be classified into two groups, closely related to their molar mass. The first group consisted of five elements with relatively light molar masses: Cu, Zn, As, Mo, and Ag. Cu and Zn, which have nearly equal molar masses, showed similar accumulation levels in N. lugens. The second group included two elements with relatively heavy molar masses: Cd and Pb. This study demonstrated that bioaccumulation of seven heavy metals was regular in the rice plant-N. lugens system. N. lugens could be used as bioindicators of the contaminated degree for Zn in rice paddy fields. This information may provide a basis for future ecological research on the bioaccumulation mechanism in N. lugens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.