Abstract

The mineral-organo composites control the speciation, mobility and bioavailability of heavy metals in soils and sediments by surface adsorption and precipitation. The dynamic changes of soil mineral, organic matter and their associations under redox, aging and microbial activities further complicate the fate of heavy metals. Over the past decades, the wide application of advanced instrumental techniques and modelling has largely extended our understanding on heavy metal behavior within mineral-organo assemblages. In this review, we provide a comprehensive summary of recent progress on heavy metal immobilization by mineral-humic and mineral-microbial composites, with a special focus on the interfacial reaction mechanisms of heavy metal adsorption. The impacts of redox and aging conditions on heavy metal speciations and associations with mineral-organo complexes are discussed. The modelling of heavy metals adsorption and desorption onto synthetic mineral-organo composites and natural soils and sediments are also critically reviewed. Future challenges and prospects in the mineral-organo interface are outlined. More in-depth investigations are warranted, especially on the function and contribution of microorganisms in the immobilization of heavy metals at the complex mineral-organo interface. It has become imperative to use the state-of-the-art methodologies to characterize the interface and develop in situ analytical techniques in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.