Abstract

The knowledge of (diffusion, drift, and funneling assisted) charge collection within electronic devices is essential to design radiation hardened Integrated Circuits (ICs). In the present work, diffusion time resolved charge collection studies were performed on stripe-like junctions using 12 MeV carbon and 28 MeV silicon microbeams and MEDICI simulation calculations. The relative average arrival time of the diffused charge on the junctions was measured along with the amount of charge collection by the junctions. The average arrival time of the diffused charge is related to the first moment (or the average time) of the arrival carrier density on the junction. The experimental results and MEDICI (a 2D-device simulator) calculations support this interpretation. These results show the importance of the diffusive charge collection by junctions, which is especially significant in accounting for Single Event Upsets (SEUs) and Multiple Bit Upset (MBUs) in digital devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.