Abstract

[1] A characteristic heavy-ion signature observed in the vicinity of the Martian ionosphere during passages of Corotating Interaction Region (CIR) structures in solar wind is reported. We analyzed data obtained by the IMA/ASPERA-3 onboard the Mars Express (MEX) from September to October 2007. We compared the solar wind velocity at Mars derived from a shifted Maxwellian fitting to the IMA data with time-shifted Advanced Composition Explorer satellite data taken at ∼1 AU to the Martian orbit. Using the derived solar wind velocity, we identified four CIR structures passing through Mars quasiperiodically. Coinciding with the CIR passages, the IMA observed heavy-ion flux enhancement in the vicinity of the Martian ionosphere. The heavy-ion energies reach ≥100 eV and sometimes up to approximately several kiloelectron volts. Observed ion velocity distribution functions show that they are mainly precipitating toward the Martian ionosphere. The flux of the precipitating ions is typically 105–106 (104–105) cm−2 s−1 for the energy range of 50–500 eV (≥500 eV) and it becomes by one order of magnitude higher in one event. While the flux level is consistent with a previous model prediction of sputtering ions, the intermittent occurrence of the heavy-ion precipitation differs from conventional expectation of constant precipitation. These results suggest that the efficiency of the sputtering process in the Martian atmospheric escape is highly variable with dynamic solar wind variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.